Numerical radius orthogonality in $$C^*$$-algebras

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Approximate Birkhoff-James Orthogonality and Approximate $ast$-orthogonality in $C^ast$-algebras

We offer a new definition of $varepsilon$-orthogonality in normed spaces, and we try to explain some properties of which. Also we introduce some types of $varepsilon$-orthogonality in an arbitrary  $C^ast$-algebra $mathcal{A}$, as a Hilbert $C^ast$-module over itself, and investigate some of its properties in such spaces. We state some results relating range-kernel orthogonality in $C^*$-algebras.

متن کامل

Orthogonality in WBJ Algebras

The characterization of automorphisms of Bernstein algebras is an open problem. We only know some particular results. Previously we have characterized the automorphisms of quasiorthogonal, orthogonal, and strongly orthogonal weak Bernstein-Jordan algebras. In this paper we work on the minimal dimension with respect to quasiorthogonality, orthogonality, and strong orthogonality. We establish som...

متن کامل

extend numerical radius for adjointable operators on Hilbert C^* -modules

In this paper, a new definition of numerical radius for adjointable operators in Hilbert -module space will be introduced. We also give a new proof of numerical radius inequalities for Hilbert space operators.

متن کامل

C∗-algebras and Numerical Linear Algebra

Given a self adjoint operator A on a Hilbert space, suppose that that one wishes to compute the spectrum of A numerically. In practice, these problems often arise in such a way that the matrix of A relative to a natural basis is “sparse”. For example, discretized second order differential operators can be represented by doubly infinite tridiagonal matrices. In these cases it is easy and natural...

متن کامل

Linear Orthogonality Preservers of Hilbert C∗-modules over C∗-algebras with Real Rank Zero

Let A be a C∗-algebra. Let E and F be Hilbert A-modules with E being full. Suppose that θ : E → F is a linear map preserving orthogonality, i.e., 〈θ(x), θ(y)〉 = 0 whenever 〈x, y〉 = 0. We show in this article that if, in addition, A has real rank zero, and θ is an A-module map (not assumed to be bounded), then there exists a central positive multiplier u ∈M(A) such that 〈θ(x), θ(y)〉 = u〈x, y〉 (x...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annals of Functional Analysis

سال: 2020

ISSN: 2639-7390,2008-8752

DOI: 10.1007/s43034-020-00071-z